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The subject of this thesis is the development of an Automatic Steering

function on a vehicle driving simulator. A model-free controller based on alge-

braic derivative estimation is developed to drive the steering wheel motor and

therefore implement autonomous driving functionality in the driving simula-

tor. Due to the pandemic of 2020, limited lab access resulted in the inability

to tune the implemented controller on the actual system. Presented in this

work is a proof-of-concept of the feasibility of such a system, with the final

step being the tuning of the implemented controller.
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Chapter 1

Introduction

1.1 Objectives

The objective of this thesis is to implement automatic steering on a

Cruden vehicle driving simulator using Automotive Simulation Models (ASM),

a vehicle model created by dSPACE. The control methodology used for this

purpose is model-free control, a novel approach developed in [5]. The purpose

for the creation of this functionality in the driving simulator is to study the

interaction of human drivers with autonomous driving systems.

1.1.1 Impact of the 2020 pandemic

The COVID-19 pandemic of 2020 caused research lab closures across

the United States. Due to this reason, this work fell short of its intended

objective of implementing automatic steering on the driving simulator. While

the control algorithm was implemented on the system, the lab was shut down

before the controller could be tuned for the desired performance on the driving

simulator. As a result, the data shown in section 4.4 are from the same control

algorithm but applied to a simulated motor model. This work, in its current

form, serves as a proof-of-concept for the intended objective, with the tuning

of the system as the last remaining step.
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1.2 Motivation and justification

The Cruden driving simulator is an invaluable tool in studying human

interaction with an automobile due to its ability to load different types of vehi-

cles, traffic scenarios, roads, and environments without the need for expensive

real world testing. A simulator test also offers a higher safety standard by

virtue of it being virtual. With autonomous vehicles steadily gaining in pop-

ularity, it is important to scientifically study the interaction of human drivers

with autonomous vehicle systems. Specifically, the points when control of the

vehicle is switched from the human driver to the autonomous driving con-

troller. Therefore, the need for an automatic steering system on the simulator

arises.

In its default implementation, the Cruden driving simulator is capable

of giving steering and motion feedback to the human driver in normal driv-

ing scenarios. As such, there is no support to simulate autonomous driving

situations in the driving simulator. This necessitates the need to implement

a custom automatic steering feature in the simulator to study the handover

of control by the human to the computer and vice versa. For instance, some

useful tests that this will enable include human driver reaction times when

disengaging the automatic steering, human driver biometric scanning during

different traffic scenarios, and evaluating the performance of various steering

control strategies for the edge case of switching from human vehicle control.

To summarize the requirements: a system feature needs to be implemented

that allows the human driver to push a button to switch the vehicle from hu-
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man driver steering to automatic steering and vice versa. This is illustrated

in figure 1.1.

Figure 1.1: The system functionality needed to study human driver interaction
with the autonomous system.
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The model-free control method was selected for this project as sys-

tem identification proved to be difficult on the steering wheel of this driving

simulator due to mechanical limits on the position of the steering wheel. Ad-

ditionally, the unpredictable friction profile of the steering wheel and motor

assembly meant that frequency domain identification would yield poor results.

Additionally, the novelty of the model-free control method also was a factor

in this decision.

Figure 1.2: Picture showing the mechanical position limiter on the steering
column (orange spacer)
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Chapter 2

System description

2.1 Driving simulator hardware description

The Cruden driving simulator system hardware is composed of a motion

base, a cylindrical projection screen, three projectors, ten PCs, 4 speakers,

and equipment for their connection. The following section is aimed at making

the reader reasonably familiar with the hardware of the simulator while not

diving too deep in the specifics of each component. Each relevant component

is described in a way that is pertinent to the project and therefore, should

the reader want more detail about anything discussed in the following section,

they should refer to the manufacturer’s documentation.

2.1.1 Driving simulator components

Motion base

The Motion base is a 6 degree-of-freedom hexapod platform on which

the simulator cab is mounted. It has 6 electric actuators that provide move-

ment in 3-dimensions to mimic the motion of the vehicle being simulated. It

also houses the steering wheel, steering wheel feedback actuator (the Control

Loading motor), and the pedal box assembly.
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Figure 2.1: The Motion base

Display system

The display system consists of three projectors with their positioning

calibrated in order to produce one contiguous image on the 210◦ field-of-view

cylindrical screen. In addition to the projection, the simulator cab is equipped

with several screens that serve as the instrument cluster, the driver’s and outer

rearview mirrors, and a programmable touchscreen.
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Figure 2.2: Layout of the motion base and the screen

2.1.2 Integration with the software

The simulator hardware is integrated with the software described in

section 2.2 by a total of 10 networked computers. These computers serve

specific functions with regards to the operation of the simulator. The computer

network is shown in figure 2.3 and the roles of the computers are as follows

[8]:

• Operator (OP) - starts the simulation software and the master computer

for the simulator.

• Master (M) - starts the other computers on the network.
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• Image Generators (IG) - computers that generate the graphics to be sent

to the mirror screens or the projectors.

• Spectator (S) - allows spectators to see the reaction of the car and the

driver (not used in this project).

• Physics (EPN) - run the Simulink vehicle model described in section

2.2.2, which handles the physics of the simulation.

• SCALEXIO - the real-time computer on which the generated code is

built. This is the computer used to run a simulation with Hardware-in-

the-Loop (HiL) (not shown in figure 2.3).

Figure 2.3: Network structure of the simulator system (MB stands for Motion
Base)[8].
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2.1.3 Control loader description

The force feedback on the steering wheel is achieved by means of the

eF-DDM-20 CL motor manufactured by E2M Technologies in The Nether-

lands. This direct-drive, multi-turn actuator offers high-fidelity in reproducing

smooth steering feedback torque and finds application in many different kinds

of simulators. This serves as the actuator for the control problem posed for

this project.

Figure 2.4: The steering feedback CL motor: eF-DDM-20 by E2M Technolo-
gies [12]

2.2 Driving simulator software description

The hardware described in section 2.1 uses Automotive Simulation

Models (ASM) as the software to simulate the vehicle in real-time. This sec-

tion provides a useful overview about the software and its organization in order

9



to save the reader the time and effort required to go through the significant

amount of documentation available for this software. This is by no means a

comprehensive guide on how to use ASM. Instead, this is a distillation of some

useful information that pertains to this project from the ASM documentation

such as [2], [3], and [4]. The reader should approach this section as a primer

on the software so as to better understand the methodology described in later

chapters.

2.2.1 Software hierarchy

Figure 2.5 shows the overview of the software layers that run the sim-

ulation. The base layer is made in Simulink that contains the vehicle model

and the control algorithms - this is the layer where custom controllers are

implemented. This model is parameterized by the dSPACE ModelDesk soft-

ware, which provides a graphical user-interface to load vehicles with different

properties (e.g. sedan, truck, etc.). Once the model is fully parameterized,

ConfigurationDesk is used to generate code that can be sent to the SCALEXIO

computer to run the simulation in real-time. Finally, ModelControl and Pan-

thera - software written by Cruden - are used to interface between the dSPACE

real-time computer and the Cruden hardware.
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Figure 2.5: Hierarchy of the software used to run the simulator [14]

2.2.2 Automotive Simulation Models (ASM)

ASM is a high-fidelity virtual vehicle software developed by dSPACE.

The model uses Simulink as the platform of implementation and uses “open”

blocks, which means that the model implementation is visible to users down

to the level of built-in Simulink blocks. This allows the user to modify and

customize the vehicle model to develop their own systems and then test them

on a fully simulated vehicle in real-time. In addition to the vehicle models,

ASM also provides software to create roads and environments, traffic scenarios,

and driving maneuvers, all of which can be used to create more realistic testing

within the simulation. The models used for the purposes of this thesis are the
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ASM Vehicle Dynamics with Traffic.

Figure 2.6: Top page of the ASM Vehicle Dynamics Simulink model.

ASM Vehicle Dynamics is a nonlinear multibody vehicle system with

support for vertical, longitudinal, and lateral vehicle dynamics. The model is

divided into five main subsystems as shown in figure 2.7 where each is linked

with the others and provides inputs and outputs for the other subsystems:

12



Figure 2.7: Schematic of the vehicle model as implemented in the MDL block
in Simulink [2]
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The subsystems of interest for this project are the Vehicle dynamics

and Environment subsystems. The Vehicle dynamics susbsystem contains the

blocks that determine the steering dynamics while the Environment subsystem

contains the driver model in ASM (explained in section 2.2.5).

2.2.3 The ASM simulation loop

The ASM model has access to many signals available from the Cruden

driving simulator hardware. For instance, the CL motor (used to provide steer-

ing wheel feedback) provides the vehicle model with signals such as steering

wheel position, steering wheel velocity, and steering wheel force (or torque).

These are signals from the physical world that are generated by the person in

the driver’s seat by interacting with the steering wheel. The values of these

signals are sent from the IO block to the MDL block for each iteration of the

simulation loop. These signals are sent to various subsystems to act as inputs

into the vehicle model. The model then computes the response of each vehicle

subsystem to the aforementioned inputs, resulting in the total vehicle response.

This response is used by the middleware from Cruden to generate the graphics

images and animations, in addition to rendering the environment, which are

then projected on to the screens. In addition, the MDL block generates the

signals needed to send to the driving simulator hardware, namely the motion

base actuators and the CL motor, to simulate the vehicle motion and steering

feedback respectively, completing the simulation loop with the human driver

in it.

14



Figure 2.8: Diagram showing the signal flow with the human in the loop

As a part of the vehicle response, the model generates the steering feedback

torque which occurs due to the self-aligning moment experienced by the tires

and the force experienced at the wheels due to the road. In a real vehicle, these

forces are transmitted through the suspension and steering linkages back to the

driver (with the exception of steer-by-wire systems, which artificially generate

those forces at the steering wheel). In the Cruden driving simulator these

forces are transmitted through the CL motor to provide a realistic feeling to

the driver. The details of how these signals are sent to and from the model

are discussed in the following section.
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2.2.4 Communication between the hardware and software

Figure 2.9: Signal flow from the hardware to the software [8]

Figure 2.9 gives a schematic for the signals available for the software from

the hardware layer. As previously mentioned, the vehicle model has access

to signals such as steering angle, throttle and brake position etc. from the

hardware in the simulation loop. The block used to command the CL mo-

tor is the To E2M CL block inside the IO block of the Simulink model (figure

16



2.10). This block takes in signals like steering wheel friction and inertia, steer-

ing wheel position limits, and the torque demanded from the CL motor. The

value of steering wheel torque to be fed back to the driver is calculated in the

STEERING 3DOF VARIABLE RATIO block inside the VehicleDynamics subsys-

tem in the MDL block. This opens up a possibility to exploit the CL hardware

to perform automatic steering with the torque demand signal being generated

by a custom controller.

Figure 2.10: Screenshot showing the default self-aligning torque signal being
sent into the To E2M CL block.

17



Figure 2.11: Screenshot showing the default self-aligning torque signal being
sent into the From E2M CL block.

Conversely, the From E2M CL block inside IO provides the position,

velocity, and force signals from the steering wheel which can be used as mea-

surements for any custom controller (figure 2.11).

2.2.5 Driver model in ASM

ASM has an internal driver model implemented for simulation cases

without any hardware where external driver inputs are unavailable. Depend-

ing on the steering mode selected (section 2.2.6), one can run a purely software

simulation (no hardware-in-the-loop). In such cases, the internal ASM driver

model produces signals such as steering angle, throttle position, and brake

18



position. The job of the driver is divided into two separate controllers - the

longitudinal controller and the lateral controller. The longitudinal controller

is responsible for generating the throttle and brake signals while the lateral

controller generates the steering signal. There are two implementations of the

lateral controller - LATERAL CONTROL1, used for most normal driving condi-

tions, and LATERAL CONTROL2, used for stationary applications like driving in

a circle at constant speed. Both lateral and longitudinal controllers use pre-

view information about the road in the ASM model to generate their respective

signals [4].

For the purpose of automatic steering control design on the Cruden

driving simulator the output of the ASM driver model was used as the reference

signal. This reference signal can be used to compute the error that is fed

into the controller described in chapter 3. To access the ASM driver steering

position reference signal while the simulation is run with hardware-in-the-loop

(as in the case of the Cruden simulator), the Simulink model must be modified

in a way that allows the driver to change the Steer Mode flag on the fly mid-

simulation. The system of flags used by ASM to implement different steering

modes is discussed in the following section.

2.2.6 Steering modes in ASM

ASM allows for varying degrees of HiL simulation: from no hardware

in the loop, to the system described in section 2.1. In order to manage and

redirect the input signals when hardware is connected, ASM uses a system of

19



boolean or numerical flags to set modes that allow an external (human) driver

to provide the steering signal instead of the internal ASM driver described in

section 2.2.5.

For the purposes of this project, three flags are of importance: the

Steer Mode, LatDriver, and LatCtrl1 Enable flags. The Steer Mode flag is

utilized to internally set a steering mode for the simulation while the LatDriver

flag is used to select the specific internal lateral controller in the ASM driver

model described in 2.2.5. The LatCtrl1 Enable flag is utilized to enable/dis-

able the LATERAL CONTROL1 block. The Steer Mode flag can take one of three

values, each corresponding to a different source for the steering signal:

• 1|Stim - The steering signal is acquired from a source external to the

ASM model. This is the default mode for the Cruden driving simulator

since the steering signal comes from the physical steering wheel being

controlled by the human driver.

• 2|Driver - The steering signal is acquired from the driver model im-

plemented within ASM. The ASM driver model is explained in section

2.2.5.

• 3|Fix - Holds the last steering angel value.

The LatDriver flag can take two values, corresponding to different implemen-

tations of the lateral controller within ASM:

20



• 1|LatCtrl1 - Activates the LATERAL CONTROL1 block which is appropri-

ate for most driving applications (which causes the LatCtrl1 Enable

flag to be set to 1 or true).

• 2|LatCtrl2 - Activates the LATERAL CONTROL2 block which is appropri-

ate for few special conditions like circular tracks.

The values that these flags can take and their behaviour is summarised in table

2.1 below.

Table 2.1: Boolean flags used for selecting steering input mode

Flag Value Meaning

Steer Mode

1 → Stim External stimulus
2 → Driver ASM driver
3 → Fix Fixed input

LatDriver
1 → LatCtrl1 Lateral controller 1
2 → LatCtrl2 Lateral controller 2

LatCtrl1 Enable
1 → Enabled Lateral controller 1 enabled
0 → Disabled Lateral controller 1 disabled

21



Chapter 3

Model-free control

Model-free Control (MFC) is a relatively new control concept intro-

duced in 2008 by Michel Fliess and Cedric Join [5]. The aim of this method is

to do away with the need for an accurate system model. The term model-free

control has been used in different contexts in literature - sometimes referring to

“classical” PID controllers, to robust and adaptive control systems. However

the approach in [5] is rather different from the above mentioned techniques.

The core ideas of the MFC approach are real-time algebraic derivative esti-

mation and the ultra-local model, described in the following sections. The

resultant controller performs well without the need for a model of the plant

and is very robust against signal noise.

3.1 Ultra-local model

For the sake of simplicity, the system developed here is assumed to be

single-input single-output (SISO) with input variable u and output variable y.

The plant with an unknown model of arbitrary complexity can be replaced by

the following ultra-local model

y(ν)(t) = φ+ αu(t) (3.1)

22



The terms of equation 3.1 are explained as follows:

• y(ν), (ν ≥ 1) is the ν-order time derivative of the output y. The value of

ν is chosen by the control designer, however a value of 1 or 2 are known

to provide good performance for most systems in practice.

• φ is a continuously updated quantity representing the unknown dynam-

ics of the plant. Additionally, all disturbances in the system are also

captured by this term. φ is estimated in real-time through techniques

shown in section 3.3.

• α is a non-physical, tunable parameter, chosen in a way that αu and y(ν)

are of comparable magnitude. Its value is generally obtained through

trial and error by someone with a good understanding of the system’s

behaviour.

• u(t) is the control input into the system.

The ultra-local model of equation 3.1 can be intuitively understood as

an approximation of the plant dynamics that is valid for a very short duration

of time (e.g. a few sample times). The estimated value of φ is considered to

be constant during the aforementioned short duration, or piecewise constant

during the duration of time. Figure 3.1 is an attempt at giving some visual

intuition of the ultra-local model. Consider the true nonlinear response of the

system represented as a time-varying hypersurface in the state-space. The

hypersurface is approximated by the blue surface (also a function of time) but

23



is piecewise constant for the estimation window of the parameter φ. Although

this picture is not strictly correct, it captures the idea behind approximating

a given plant using an ultra-local model.

Figure 3.1: Visual intuition for the ultra-local model.

In order to control the position of the CL motor, an ultra-local model

of order ν = 2 was selected:

ÿ(t) = φ+ αu(t) (3.2)

3.2 Control law and closed-loop dynamics

For the model developed in section 3.1, a closed loop control law is

proposed here for the ν = 2 case. This intelligent PID control law incorporates

24



the linearizing effect of the ultra-local model with the addition of Proportional-

Integral-Derivative (PID) action and is given as follows:

u(t) =
−φ+ ÿd(t)−KI

∫
e(t)−KP e(t)−KDė(t)

α
(3.3)

where yd is the desired output trajectory, e = y − yd is the tracking error and

KP , KI , and KD are the PID gains. Closing the loop by combining equations

3.1 and 3.3 results in the following closed-loop dynamics:

ë(t) +KDė(t) +KP e(t) +KI

∫
e(t)dt = 0 (3.4)

It is worth noting that after closing the loop with the control law pre-

sented in equation 3.3, the parameter φ, representing the unknown plant dy-

namics and disturbances, is absent from the above equation. Therefore, the

closed-loop dynamics are governed by the linear ODE shown in equation 3.4

and can be tuned by appropriately picking the values for the PID gains.

3.3 Real-time estimation of the model parameter φ

The ultra-local model in equation 3.2 can be rearranged to give the

following

φ = ÿ(t)− αu(t)

Here, in order to estimate the value of φ, one needs to estimate the

value of the second-order derivative of the output y(t). In a discrete setting,

since the current value of u(t) is unavailable at time t, we use the value of
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u((k − 1)t) in the above equation to avoid an algebraic loop in the digital

implementation to get the following difference equation:

φ = ÿ [k]− αu [k − 1] (3.5)

The algebraic estimation methods developed by Fliess and Ramı́rez in Fliess,

Join, and Ramı́rez in [6] and [7] are the key innovations that solves this problem

in real-time. The following sections describe the expressions for the estimation

of the derivative of a given noisy signal.

Let y(t) be a noisy signal whose second-order derivative we wish to

estimate. We can write expressions for algebraic derivative estimators of nth

order using an nth order approximation of the noisy signal [10]. Presented here

are estimators of order 2 and 3 with the explicit derivation done for the case

when the order is 2.

3.3.1 Estimator of order 2

We can write the second order approximation of y(t) in the time domain

and the Laplace domain (s-domain) using a Taylor expansion centered around

zero (without loss of generality) as follows:

y(t) = y(0) +
ẏ(0)

1!
t+

ÿ(0)

2!
t2 = a0 + a1t+ a2t

2 (3.6)

Y (s) =
a0
s

+
a1
s2

+
a2
s3

(3.7)

We can multiply the above s-domain expression by s2 to isolate a1 so that it

may be removed from the calculation:

s2Y (s) = a0s+ a1 +
a3
s

(3.8)
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Performing a d2
ds2

operation to eliminate a0 and a1 and rearranging:

2Y (s) + 4s
dY (s)

ds
+ s2

d2Y (s)

ds2
= 2a2

1

s3

Multiplying by 1
s3

to remove all derivatives (since derivatives are non-causal

in a discrete sense) and writing the expression as a series of integrators:

2

s3
Y (s) +

4

s2
dY (s)

ds
+

1

s

d2Y (s)

ds2
= 2a2

1

s6

We can now obtain an expression for the second-order estimation of the

second-order derivative of y(t). To convert the above expression to the time

domain, we need to use the Inverse Laplace formula and Cauchy’s formula for

repeated integration, which would give us the following expression:∫ t

0

(t− τ)2y(τ)dτ − 4

∫ t

0

(t− τ)τy(τ)dτ +

∫ t

0

τ 2y(τ)dτ = 2a2
t5

5!
(3.9)

Rearranging the above expression gives us the derivative estimation:

a2 = ÿ(t) =
60

t5

∫ t

0

(t2 − 6tτ + 6τ 2)y(τ)dτ (3.10)

If one chooses to eliminate a1 and a2 in equation 3.8, one would be left

with an expression for a0 which is the value of the signal itself at the time

in question. This estimation would then simply act as a real-time filter for

the signal. This phenomenon also explains the high robustness of this method

against noise in the system signals.
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3.3.2 Estimator of order 3

Similar to section 3.3.1, if we use a third order Taylor expansion of the

signal and follow the same steps as before, we get the following expression for

the third-order estimation of the second-order derivative of y(t):

a2 = ÿ(t) =
120

t6

∫ t

0

(4t3 − 45t2τ108tτ 270τ 3)y(τ)dτ (3.11)

The discrete implementation of this estimator required to program it

on a computer is developed in the following section.

3.4 Discrete real-time implementation of algebraic deriva-
tive estimator

The general form of a causal, real-time algebraic derivative estimator

of a jth order derivative is developed in appendix A and is shown below:

aj = y(j)(t) = (−1)j
∫ T

0

P (T, τ)y(t− τ)dτ (3.12)

where T is the estimation window and t is the time at which the derivative is

evaluated. P (T, τ) is a polynomial of t and τ as seen in the previous sections.

This can be written in discrete form as a summation shown below:

aj = y(j)(t) u (−1)j
N+1∑
k=1

αkP (T, τk)y(t− τk) (3.13)

This sum can be computed in real-time using trapezoidal integration.

To solve the expression from equation 3.13 in a real-time system, we can

reduce the computational power needed by pre-computing the coefficients of
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the discretized polynomial P (T, τk). We can also solve for αk, the coefficients

that arise from the trapezoidal integration of the sum from equation 3.13. We

introduce ˆP (T, τk), a vector that contains the coefficients resulting from the

trapezoidal integration and discretization of P (T, τ):

ˆP (T, τk) =
[
α1P (T, τ1) α2P (T, τ2) . . . αN+1P (T, τN+1)

]
(3.14)

where τk = (k − 1)Ts and

αk =

{
Ts
2
, k = 1 or k = N + 1

Ts, k = 2, 3, . . . , N

We also introduce ŷ(t− τk), a vector containing the last N + 1 samples of the

signal y(t). At each time t = kTs, the newest sample is pushed to the top and

the oldest sample is removed from the vector:

ŷ(t− τk) =


y(t)

y(t− Ts)
...

y(t−NTs)

 (3.15)

Using the notation introduced above, we can rewrite equation 3.13 to

get an expression for the real-time estimation of the jth order derivative of

y(t):

aj(t) = y(j)(t) u (−1)jP̂αk
(T, τk)ŷ(t− τk) (3.16)
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Chapter 4

Controller Development

In this section, the process of designing the model-free controller for

the Cruden driving simulator steering system is explained. The controller is

developed within the ASM traffic Simulink model which is then used to compile

and generate code to be run as an executable on the real-time SCALEXIO

computer. As mentioned in section 1.1.1, the controller was implemented on

the actual Cruden driving simulator but there was not enough time to tune it

to achieve desired performance. As a result, there are no data showing how

the tuned controller would perform on the actual system. Presented in this

section is the controller implemented in a similar way in Simulink to control a

motor model, as a proof-of-concept. In the following sections, the motor model

is described and the results are presented for the controller’s performance.

4.1 Test of feasibility

In the Cruden simulator, the self-aligning torque experienced by the

wheels is sent through to the steering wheel as feedback to the driver. The Con-

trol Loading (CL) motor exerts this torque on the steering wheel which is felt

by the driver. As previously mentioned in section 2.2.4, the self-aligning mo-
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ment is demanded from the CL motor through the To E2M CL block inside the

IO subsystem. This signal pathway was exploited to demand a user-defined

torque from the CL motor to test the feasibility of this control approach.

4.2 Motor model

The controller developed in this chapter was first tested through sim-

ulation on a motor model before being implemented on the actual Cruden

driving simulator system. This simulation was used to debug and refine the

Simulink code. Although the model parameters for the simulated model are

arbitrary, it is useful in testing the model-free control algorithm. The motor

model used for this simulation test is presented in this section.

Jθ̈ + bθ̇ = Kti (4.1)

Lm
di

dt
+Rmi = Vin −Keθ̇ (4.2)

where the symbols have the following meaning and values:

Table 4.1: Values of motor parameters

Parameter Value Units
Motor resistance Rm 1.7 Ω
Motor inductance Lm 0.5 H

Motor inertia Jm 0.01 kg·m2

Motor damping bm 0.1 N·m·s
Motor constant Kt and Ke 0.0057 N·m/A and V/rad/s

Motor position θ - rad

Motor velocity θ̇ - rad/s
Motor current i - A
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In order to obtain position from the above equation, the velocity state

is simply integrated, making it a third-order plant.

4.3 Control design

For the controller implementation on the Cruden driving simulator, the

control loop is composed of the steering angle signal being read in from the

hardware sensors, which is compared to the reference signal to get the error

signal. This error then gets sent to the model-free controller along with the

second-order time derivative of the reference signal and other signals. The

control loop designed for this system is shown below:

Figure 4.1: Control loop for the steering wheel position control problem.
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The ˆP (T, τk) vector from equation 3.14 was precomputed offline by

calculating the discretized polynomial shown in section 3.4. The Simulink

model for the system is shown in appendix B. The system response was tested

for the model-free controller and compared to a traditional PID controller.

The primary reference signal used was r(t) = 10 sin(t) + sin(6t) which was

polluted with some band-limited white noise. In order to create the ŷ vector

described in equation 3.15, a Delay Line block is used with the delay line size

equal to N + 1. The output of this block is the inverted ŷ vector, therefore a

Flip block is used to put the vector in the correct orientation. The value of

u(t) for the previous time step is obtained by using a Memory block. All across

the model, Simulink in-built GoTo blocks are used to collect the appropriate

signals for visualization after the simulation.

4.4 Simulation results
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Figure 4.2: Comparison of MFC vs. PID when the reference is a noisy signal.
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The above figure compares the performance of the model-free controller

against that of a PID controller tuned using the usual methods of tuning. It

can be seen that the model-free controller performs better in the presence of

a noisy signal. In this case, the noise power is 0.0001. Additionally, the PID

controller must be tuned for a response on the slower side to be more robust

against the noise, adding to its disadvantage. The model-free controller is also

more robust against parameter changes when compared to the PID controller

for a similar change.

Figure 4.3 shows the real-time algebraic estimation of ÿ(t) and the

estimation error. Although the estimation error looks large from the plot

below, in actuality the estimation quality is quite good and the ÿ(t) signal is

calculated even in the presence of noise amplification from the original signal.
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Figure 4.3: Algebraic derivative estimation for the case shown above.
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4.4.1 Effect of estimation parameters

The performance of the model-free control method is quite sensitive

to the parameters in the algebraic estimation step. The estimation window

N determines the quality of the algebraic derivative estimation which in turn

affects the system response. A smaller value for N means the estimator will run

faster and the ultra-local model of the system will be more accurate. Bigger

values of N result in higher computational load and slower performance but

offer better immunity against noise in the signal. However the estimation

window must be large enough so that the numerical discretization error is

overcome [10].

The order of the algebraic estimation also affects the quality of the

estimation. Continuing the ideas described in section 3.3, the order of the al-

gebraic estimator is the order of the Taylor approximation used to develop the

estimation integral. The following figures show the effect of N and estimator

order on the system’s response.
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Effect of estimation order
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(b) Estimation order 3

Figure 4.4: Comparison of a derivative estimator of order 2 vs. a derivative
estimator of order 3.

In order to examine the effect of the order of the estimator on the

quality of the estimation, band-limited white noise of power 0.0001 was added

to the reference signal. The above figure shows how the order of the estimator

affects the estimation of the derivative signal. The higher-order estimator

captures more of the signal’s movement, as is expected since this estimator

is derived using a better approximation of the original noisy signal. On the

other hand, the lower order estimation then appears to have a smoothing effect

on the signal. The phase of the filter/estimator can be tuned by selecting an

appropriate window, in this case N = 150. It is also noteworthy that a change

in the value of estimation window N has a similar effect for both the second-

order and third-order estimators.
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Effect of N
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Figure 4.5: Comparing the effect of estimation window size on the quality of
the algebraic estimation.
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The figure above shows how the quality of the algebraic derivative es-

timation is affected by the estimation window parameter. As can be noted,

there is a range of appropriate length of the estimation window that results in

a good quality estimate. Values of N that are too small or too big cause the

estimation to drift and in turn, affect the control performance.

4.4.2 Effect of controller parameter α
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Figure 4.6: Comparing the effect of changing α on the system response and
controller performance.
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As per section 3.1, the α parameter is tuned such that y(ν) and u

are of the same magnitude. As expected, changing the value of α scales the

magnitude of the control signal. When the value of α is very large, as in

the case of figure 4.6d, the control input is scaled to be proportionally small,

therefore reducing the system performance in this case.

It must be noted, however, that as of the writing of this thesis, there is

no well-defined heuristic or method for tuning the α parameter - that is still

an area of active research.

39



Chapter 5

Conclusions and Future Work

The simulation results show that the model-free controller approach

is feasible in developing automatic steering on the Cruden driving simulator

hardware. The final step in implementing a functional system is tuning the

controller to achieve the desired performance. To improve on the results pre-

sented in this work, the model-free controller could be tested for a non-linear

motor model with noise. Also, the effect of simulation step size can be studied

on the performance of the system. One limitation of the model-free controller

is its poor performance for reference signals with infinite derivatives such as a

step input. However, for any steering system, the reference signal will always

be a smooth analytical signal and this issue will not arise for similar systems.

As far as the hardware implementation is concerned, an additional feed-

forward term could be added to the controller in the future to deal with the

friction in the system and improve tracking performance.

The algebraic estimation methods used to determine the output deriva-

tives worked very well. One further experiment would be to compare the effect

of cascading lower order estimators and comparing their performance with a

higher order estimator of the same total order.
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Appendix A

Algebraic Derivative Estimation

Deriving the general derivative estimator [5], [7], [10]

Let ỹ(t) be an analytical (infinitely differentiable) noisy signal in the

time domain. This signal can be approximated by a truncated Taylor expan-

sion

ỹ u y(t) =
n∑
j=0

y(j)(0)
tj

j!
= a0 + a1t+ a2t

2 + . . .+ ant
n (A.1)

where y(j)(0) is the initial condition for the jth order derivatives of the signal,

n is the order of the approximation (and therefore the order of the estimator

used), and the approximation is about t = 0 without loss of generality. Taking

the Laplace transform of the above equation, we get the frequency domain

signal as a series of integrators:

Y (S) = a0 +
a1
s2

+
a2
s3

+ . . .+
an
sn+1

(A.2)

In the general case, the nth order estimator for the jth order derivative can

be obtained by manipulating the above expression to isolate the appropriate

term and converting back to the time domain to get the following

y(j)(t) u y(j)(0) = aj =
k

p(t)

∫ t

0

P̃ (t, τ)y(τ)dτ , (0 < t < ε) (A.3)
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where t is the time of estimation and ε is the interval during which this estima-

tion is valid, τ is the variable of integration, p(t) is a polynomial of t, P̃ (t, τ) is

a polynomial of both t and τ , and k is a constant scalar. The above derivative

estimator can be implemented in a fixed length window T using the following

expression:

y(j)(0) = aj =
k

p(T )

∫ T

0

P̃ (T, τ)y(τ)dτ =

∫ T

0

P (T, τ)y(τ)dτ (A.4)

The expression in equation A.4 is not a causal estimator, because in

order to estimate y(j)(τ = 0), we need values of y(τ) for τ ∈ [0, T ]. We

must transform this estimation such that it is a causal realization for it to be

implemented in real-time. Consider another signal z̃(t) approximated by the

following Taylor expansion and jth order derivative estimators around τ = 0

z̃(τ) ≈ z(τ) =
n∑
j=0

aj
τ j

j!
=⇒ aj =

∫ T

0

P (T, τ)z(τ)dτ

Make the following substitutions:

τ , t− θ and y(θ) , z(t− θ)

Here, τ can now be seen as a time-shifted time variable while z(τ) is a time

shifted signal. We can now write a Taylor expansion of z̃(τ) around θ = t as

y(θ) , z(t− θ) =
n∑
j=0

aj
(t− θ)j

j!

Now, consider the following expression

y(t) = z(t− θ)|θ=t and
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y(j)(t) =

[
dj

dθj
(z(t− θ))

]
θ=t

=

[
dj

dθj

(
n∑
j=0

aj
(t− θ)j

j!

)]
θ=t

Upon working out the derivatives in the expression on the right hand

side of the above equation, it can be shown that

y(j)(t) = (−1)jaj

where aj =

∫ T

0

P (T, τ)z(τ)dτ =

∫ T

0

P (T, τ)y(t− τ)

Therefore, we can now write a causal derivative estimator calculated at time

t using an estimation window of length T

aj = y(j)(t) = (−1)j
∫ T

0

P (T, τ)y(t− τ)dτ (A.5)

The integral in equation A.5 can be numerically solved, which will

give its approximate value (within arbitrary numerical precision, provided the

availability of sufficient computing power), using the trapezoidal integration

rule. We can make T = TsN , where T is the window of estimation, (N + 1) is

the number of samples used for estimation, and Ts is the sampling time. The

expression from equation A.5 expressed as a discrete sum is as follows:

aj = y(j)(t) u (−1)j
N+1∑
k=1

αkP (T, τk)y(t− τk) (A.6)
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Appendix B

Simulink block diagrams

u(t) =
−φ+ ÿd(t)−KI

∫
e(t)−KP e(t)−KDė(t)

α

Figure B.1: Simulink implementation of the model-free controller algorithm.
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Figure B.2: Simulink block diagram of the model-free controller simulation.
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